Journal Publications Publication in refereed journal F. JIANG, D. LI, W.K. LI and K. ZHU (2023). Testing and Modelling for the Structural Change in Covariance Matrix Time Series with Multiplicative Form. Statistica Sinica, 33, 787 - 818. https://doi.org/10.5705/ss.202021.0029 Y. ZHENG, J. WU, W. K. LI and G. LI (2023). Least Absolute Deviations Estimation for Nonstationary Vector Autoregressive Time Series Models with Pure Unit Root.. Statistics and Its Interface, 16, 199 - 216. https://dx.doi.org/10.4310/21-SII721 ZHOU, J., JIANG, F., ZHU, K., and LI, W. K. (2022). Time Series Models for Realized Covariance Matrices Based on the Matrix-F Distribution. Statistica Sinica, 32, 755 - 768. https://doi.org/10.5705/ss.202019.0424 WANG, G., ZHU, K. LI, G. and LI, Wai Keung (2022). Hybrid Quantile Estimation for Asymmetric Power GARCH Models. Journal of Econometrics, 227, 264-284. WONG, T.S.T. and LI, Wai Keung (2021). A new test for tail index with application to Danish fire loss data. Journal of Statistical Computation and Simulation, 91, 3880 - 3893. https://doi.org/10.1080/00949655.2021.1954647 K.K.F. LAW, W.K. LI and Philip L.H. YU (2021). An Alternative Nonparametric Tail Risk Measure. Quantitative Finance, 21(4), 685-696. G. WANG, W.K. LI and K. ZHU (2021). New HSIC-Based Tests for Independence between Two Stationary Multivariate Time Series. Statistica Sinica, 31, 269-300. J. XU, W.K. LI and Z. YING (2020). Variable Screening for Survival Data in the Presence of Heterogeneous Censoring. Scandinavian Journal of Statistics, 47(4), 1171-1191. K. SHEN, J.F. YAO, W.K. LI (2020). Forecasting High-Dimensional Realized Volatility Matrices Using a Factor Model. Quantitative Finance, 20, 1879-1887. Seto, W. K. W., Chiu, W. H. K., Yu, P. L. H., Cao, W., Cheng, H. M., Wong, E. M. F., Wu, J., Lui, G. C. S., Shen, X., Mak, L. Y., Li, W. K. and Yuen, R. M. F. (2020). An end-to-end artificial intelligence model accurately diagnosing hepatocellular carcinoma on computed tomography. United European Gastroenterology Journal, 8(8 suppl), 48-49. Seto, W., Chiu, K., Yu, P. L. H., Cao, W., Cheng, H. M., Lui, G., Wong, E. M. F., Wu, J., Mak, L. Y., Shen, X. P., Li, W. K. and Yuen, M. F. (2020). High diagnostic performance of a deep learning artificial intelligence model in accurately diagnosing hepatocellular carcinoma on computed tomography. Hepatology, 72 (1 Suppl), 84-85. K.K.F. LAW, W.K. LI and Philip L.H. YU (2020). Evaluation Methods for Portfolio Management. Applied Stochastic Models in Business and Industry, 36(5), 857-876. XIA, Qiang, ZHANG, Zhiqiang & LI, Wai Keung (2020). A Portmanteau Test for Smooth Transition Autoregressive Models. Journal of Time Series Analysis, 41, 722-730. Sini GUO, Wai-Ki CHING, Wai-Keung LI, Tak-Kuen SIU, Zhiwen ZHANG (2020). Fuzzy Hidden Markov-Switching Portfolio Selection with Capital Gain
Tax. Expert Systems With Applications, 149, 113304. K. LAW, W.K. LI and P. YU (2020). An Empirical Evaluation of Large Dynamic Covariance Models in Portfolio Value-at-Risk Estimation. Journal of Risk Model Validation, 14(2), 21-39. Li, D., Zeng, M.R., Li, W.K., & Li G. (2020). Conditional Quantile Estimation for Hysteretic Autoregressive Models. Statistica Sinica, 30, 809-827. WANG, D., & LI, W.K. (2020). Unit Root Testing on Buffered Autoregressive Model. Statistica Sinica, 30, 977-1003. CUI, Y., ZHU, F.K., & LI, W.K, (2020). Modeling of RCOV matrices with a generalized threshold conditional Wishart autoregressive model. Statistics and Its Interface, 13, 77-89. ZHANG, Z.Y., & LI, W.K. (2019). An experiment on autoregressive and threshold autoregressive models with non-Gaussian error with application to realized volatility. Economies, 7(2), 1-11. Publication in policy or professional journal Philip L. H. YU and Wai Keung LI (2021). Project-based Learning via Competition for Data Science Students. Harvard Data Science Review, 3(1), 1-4.
|
Conference Papers Refereed conference paper Seto, W.K.W., Chiu, K.H.K., Cao, W., Lui, G., Zhou, J. Cheng, H.M., Wu, J., Shen, X., Mak, L.Y., Huang, J., Li, W.K. and Yuen, R.M.F. & Yu, P.L.H. (2022, June). Training, validation and testing of a multiscale three-dimensional deep learning algorithm in accurately diagnosing hepatocellular carcinoma on computed tomography. Journal of Hepatology, UK.
|