Journal Publications Tian L, Fang G, Li G, L Li LG, Zhang T, Mao Y (2024). Metagenomic approach revealed the mobility and co-occurrence of antibiotic resistomes between non-intensive aquaculture environment and human. Microbiome, 12 https://doi.org/10.1186/s40168-024-01824-x Mao X, Yin X, Yang Y, Che Y, Xu X, Deng Y, Li LG, Zhang T (2024). Standardization in global environmental antibiotic resistance genes (ARGs) surveillance. Critical Reviews in Environmental Science and Technology https://doi.org/10.1080/10643389.2024.2344453 Manaia CM, Aga DS, Cytryn E, Gaze WH, Graham DW, Guo J, Leonard AFC, Li LG, Murray AK, Nunes OC, Rodriguez‐Mozaz S, Topp E, Zhang T (2024). The complex interplay between antibiotic resistance and pharmaceutical and personal care products in the environment. Environmental Toxicology and Chemistry, 43(3), 637-652. https://doi.org/10.1002/etc.5555 Zheng Q, Li LG, Yin X, Che Y, Zhang T. (2023). Is ICE hot? A genomic comparative study reveals integrative and conjugative elements as “hot” vectors for the dissemination of antibiotic resistance genes. mSystems, 8(6) https://doi.org/10.1128/msystems.00178-23 Li LG, Zhang T (2023). Roadmap to tackle antibiotic resistance in the environment under the One Health framework. mLife, 2(3), 224-228. https://doi.org/10.1002/mlf2.12078 Li LG, Zhang T (2023). Plasmid-mediated antibiotic resistance gene transfer under environmental stresses: Insights from laboratory-based studies. Science of the Total Environment, 887 https://doi.org/10.1016/j.scitotenv.2023.163870 Yin X, Zheng X, Li LG, Zhang AN, Jiang XT, Zhang T (2023). ARGs-OAP v3.0: Antibiotic-resistance gene database curation and analysis pipeline optimization. Engineering, 27, 234-241. https://doi.org/10.1016/j.eng.2022.10.011 Moradigaravand D, Li LG, Dechesne A, Nesme J, Cruz R, Ahmad H, Banzhaf M, Sørensen SJ, Smets BF, Kreft JU (2023). Plasmid permissiveness of wastewater microbiomes can be predicted from 16S rRNA sequences by machine learning. Bioinformatics, 39(7) https://doi.org/10.1093/bioinformatics/btad400 Yin X, Li LG, Chen X, Liu YY, Lam TTY, Topp E, Zhang T (2023). Global environmental resistome: Distinction and connectivity across diverse habitats benchmarked by metagenomic analyses. Water Research, 235 https://doi.org/10.1016/j.watres.2023.119875 Huang Y, Li LG, Yin X, Zhang T (2023). Polycyclic aromatic hydrocarbon (PAH) biodegradation capacity revealed by a genome-function relationship approach. Environmental Microbiome, 18 https://doi.org/10.1186/s40793-023-00497-7 Wang CX, Yang Y, Wang, Y, Wang D, Xu X, Wang Y, Li LG, Yang C, Zhang T (2022). Absolute quantification and genome-centric analyses elucidate the dynamics of microbial populations in anaerobic digesters. Water Research, 224 https://doi.org/10.1016/j.watres.2022.119049 Wang Y, Li LG, Xia Y, Zhang T (2022). Reliable and scalable identification and prioritization of putative cellulolytic anaerobes with large genome data. Frontiers in Bioinformatics, 2 https://doi.org/10.3389/fbinf.2022.813771 Yin X, Yang Y, Deng Y, Huang Y, Li LG, Chan LYL, Zhang T (2022). An assessment of resistome and mobilome in wastewater treatment plants through temporal and spatial metagenomic analysis. Water Research, 209 https://doi.org/10.1016/j.watres.2021.117885 Zhang AN, Gaston JM, Dai CL, Zhao S, Poyet M, Groussin M, Yin X, Li LG, Loosdrecht MCM, Topp E, Gillings MR, Hanage WP, Tiedje JM, Moniz K, Alm EJ, Zhang T (2021). An omics-based framework for assessing the health risk of antimicrobial resistance genes. Nature Communications, 12 https://doi.org/10.1038/s41467-021-25096-3
|